Brain energetics during the sleep–wake cycle
نویسندگان
چکیده
منابع مشابه
Brain Energetics During the Sleep-Wake Cycle
Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavi...
متن کاملModelling Blood Flow and Metabolism in the Piglet Brain During Hypoxia-Ischaemia: Simulating Brain Energetics
We have developed a computational model to simulate hypoxia-ischaemia (HI) in the neonatal piglet brain. It has been extended from a previous model by adding the simulation of carotid artery occlusion and including pH changes in the cytoplasm. Here, simulations from the model are compared with near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy (MRS) measurements fr...
متن کاملEnergetics of the brain and AI
Does the energy requirements for the human brain give energy constraints that give reason to doubt the feasibility of artificial intelligence? This report will review some relevant estimates of brain bioenergetics and analyze some of the methods of estimating brain emulation energy requirements. Turning to AI, there are reasons to believe the energy requirements for de novo AI to have little co...
متن کاملChanges in Brain Size during the Menstrual Cycle
BACKGROUND There is increasing evidence for hormone-dependent modification of function and behavior during the menstrual cycle, but little is known about associated short-term structural alterations of the brain. Preliminary studies suggest that a hormone-dependent decline in brain volume occurs in postmenopausal, or women receiving antiestrogens, long term. Advances in serial MR-volumetry have...
متن کاملOne Cycle Fuels Another: The Energetics of Neurotransmitter Release
In this issue of Neuron, Ashrafi et al. (2017) show that activity induces translocation of the insulin-regulated glucose transporter GLUT4 to the plasma membrane, where it sustains the ATP production required for synaptic vesicle cycling. However, translocation occurs from presynaptic membranes other than synaptic vesicles and involves a distinct molecular mechanism.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Neurobiology
سال: 2017
ISSN: 0959-4388
DOI: 10.1016/j.conb.2017.09.010